On the Use of Linguistic Features in an Automatic System for Speech Analytics of Telephone Conversations

نویسندگان

  • Benjamin Maza
  • Marc El-Bèze
  • Georges Linarès
  • Renato De Mori
چکیده

A research on the analysis of human/human conversations in a call centre is described. The purpose of the research is to provide short reports of each conversation with information useful for monitoring the call centre efficiency. Data from real users discussing over the telephone with agents are processed by an automatic speech recognition (ASR) system. Reports are grouped into classes by the agents based on predefined taxonomy. A train set of manually transcribed data is used for training the extraction of features relevant to the application and the classification of the conversations. The use of all the words of the application vocabulary, of automatically selected keywords, and of automatically learned sentence chunks containing semantic classes of words are compared and evaluated with a totally different test set. The results show a significant increase in performance when chunks are used even in comparison with the use of bags of words obtained with a boosting algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

مقایسه روش‌های مختلف یادگیری ماشین در خلاصه‌سازی استخراجی گفتار به گفتار فارسی بدون استفاده از رونوشت

In this paper, extractive speech summarization using different machine learning algorithms was investigated. The task of Speech summarization deals with extracting important and salient segments from speech in order to access, search, extract and browse speech files easier and in a less costly manner. In this paper, a new method for speech summarization without using automatic speech recognitio...

متن کامل

Theme identification in telephone service conversations using quaternions of speech features

The paper introduces new features for describing possible focus variation in a human/human conversation. The application considered is a real-life telephone customer care service. The purpose is to hypothesize the dominant theme of conversations between a casual customer calling. Conversations are processed by an automatic speech recognition system that provides hypotheses used for extracting w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011